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A novel finite-volume interface (contact) capturing method is presented for simulation of
multi-component compressible flows with high density ratios and strong shocks. In addi-
tion, the materials on the two sides of interfaces can have significantly different equations
of state. Material boundaries are identified through an interface function, which is solved in
concert with the governing equations on the same mesh. For long simulations, the method
relies on an interface compression technique that constrains the thickness of the diffused
interface to a few grid cells throughout the simulation. This is done in the spirit of shock-
capturing schemes, for which numerical dissipation effectively preserves a sharp but
mesh-representable shock profile. For contact capturing, the formulation is modified so
that interface representations remain sharp like captured shocks, countering their ten-
dency to diffuse via the same numerical diffusion needed for shock-capturing. Special tech-
niques for accurate and robust computation of interface normals and derivatives of the
interface function are developed. The interface compression method is coupled to a
shock-capturing compressible flow solver in a way that avoids the spurious oscillations
that typically develop at material boundaries. Convergence to weak solutions of the gov-
erning equations is proved for the new contact capturing approach. Comparisons with
exact Riemann problems for model one-dimensional multi-material flows show that the
interface compression technique is accurate. The method employs Cartesian product sten-
cils and, therefore, there is no inherent obstacles in multiple dimensions. Examples of two-
and three-dimensional flows are also presented, including a demonstration with signifi-
cantly disparate equations of state: a shock induced collapse of three-dimensional van
der Waal’s bubbles (air) in a stiffened equation of state liquid (water) adjacent to a Mie-
Grüneisen equation of state wall (copper).

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Though there seems ever to be room for improvement, finite-volume shock-capturing methods have been remarkably
successful. Nearly discontinuous shocks are effectively and robustly represented across a few mesh cells using modern
methods [55]. The local structure of the characteristics in the neighborhood of a shock offers a perspective on the root rea-
sons for this success: the convergence of the characteristics towards the shock (compression) is balanced by the numerical
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ical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Tel.:

(R.K. Shukla), cpantano@illinois.edu (C. Pantano), jbfreund@illinois.edu (J.B. Freund).
neering, Indian Institute of Science, Bangalore 560 012, India.

http://dx.doi.org/10.1016/j.jcp.2010.06.025
mailto:ratnesh@mecheng.iisc.ernet.in
mailto:cpantano@illinois.edu
mailto:jbfreund@illinois.edu
http://dx.doi.org/10.1016/j.jcp.2010.06.025
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp


7412 R.K. Shukla et al. / Journal of Computational Physics 229 (2010) 7411–7439
dissipation, which models the physical dissipation in the shock. A balance of these mechanisms maintains the shock as a
relatively sharp but mesh-representable feature. Rarefactions, of course, have the opposite outward local characteristics
behavior, but by their nature become better and better resolved in time and so are not easily harmed by artificial numerical
dissipation. Contact discontinuities, which in the current study are of interest for material interfaces in multi-component
flows, are in a way fundamentally more challenging to represent. In this case, the characteristics are parallel to the contact
and so, in contrast to shocks, there is no advective balance for the numerical diffusion. As a result, any function that repre-
sents the materials, such as a density or auxiliary interface function, will diffuse in time. Thus, sharp contact discontinuities
will become artificially smeared to the detriment of the numerical model. The principal contribution of this paper is a
scheme for capturing a material boundary across a small number of mesh cells with similar robustness and geometric flex-
ibility as shock-capturing schemes. This requires both maintaining a relatively sharp material boundary, which is particu-
larly important if each material obeys a different equation of state, as well as a sharp density boundary, as would exist,
say, between a gas and a liquid. In a similar spirit to the way shock-capturing can be crudely viewed as adding the dissipation
needed to keep the shock acceptably resolved by the mesh, our approach is to add terms to the governing equations that play
the role of an advection toward the contact, suppressing the spurious spreading caused by the same numerical dissipation
needed for capturing shocks.

Our approach is based upon so-called single-fluid modeling of multi-component flows and is widely used in simula-
tion of multi-phase compressible flows [24,42,25,1,43,44,2,47,49,22]. The term single-fluid here means that, in contrast
to say ghost-fluid methods, there are no overlaid fields of different fluids. These methods effectively avoid spurious pres-
sure oscillations that frequently occur at the multi-fluid interfaces by relaxing strict numerical conservation in favor of
continuity of pressure [2], and are naturally able to handle complex topological changes, including dynamic creation of
interfaces as in cavitation or chemical reaction. One major drawback associated with these algorithms, when applied to
multi-phase flows, is their inability to sharply capture contact discontinuities, most importantly that between the fluids.
This is particularly important where there are significant differences in the equation of state between the two fluids or
large density differences. Our interface compression technique prevents the smearing of the interface during the course
of computations. This has been done previously for incompressible flows [39,40,11], but these formulations do not
directly translate to compressible flow. Our generalization has required significant additional development, particularly
a corresponding method to maintain sharp density gradients since they are no longer tied directly to the material as in
an incompressible flow.

Numerous methods have been proposed from different perspectives to treat material boundaries. Arbitrary Lagrangian–
Eulerian methods [33] and free-Lagrange methods [5,56] consider multi-material interfaces as genuine discontinuities and
treat them as boundaries of a distorting computational grid. Front tracking [8,14,17,15,9] attempts to exploit the advantages
of both Eulerian and Lagrangian approaches: Lagrangian markers are used to identify regions occupied by different fluids for
an underlying Eulerian solver. While these methods are, in a sense, the most rigorous because they strictly maintain a sharp
boundary, large interface deformations and topological changes make them geometrically complex and computationally
expensive, and in many cases seemingly impractical in three dimensions. In the spirit of shock-capturing, we forgo the strict
precision of these Lagrangian approaches in favor of simpler methods with greater geometric flexibility.

A level-set method [41,46,35] combined with the ghost-fluid technique [12] is a popular technique, which involves
extrapolation of appropriate state variables across the multi-material interface. However, this extrapolation based technique
is not universal and special procedures have to be devised in order to accurately model wave-interface interactions in ex-
treme conditions of strong shocks and high density ratios [30–32,21,52]. For example the technique that works well with
gas–gas interfaces is inaccurate for water–gas interfaces and vice versa [32]. Additionally, these methods need modifications
for simulating the dynamic creation of interfaces because of difficulties associated with assigning ghost cell values at newly
created material boundary. Hence an isentropic single-phase cavitation model, instead of a two-fluid model that allows li-
quid and vapor phases to coexist [43], was employed in by Xie et al. [58] to study underwater explosion near a free surface.

Flux modification based techniques [37,38,7,6] introduce appropriate corrections to the numerical flux close to the inter-
face in order to maintain stability and robustness. For example, a two-fluid Riemann solver can be used in combination with
interpolation and extrapolation of interface fluxes in order to model wave-interface interactions [37,38]. Chang and Liou [7]
and Banks et al. [6] take pressure and velocity uniformity across the contact to be the underlying principle from which to
derive flux corrections near the multi-fluid interface. These modifications disrupt the conservation of the overall scheme
and their derivation assumes a single fluid–fluid interface. Hence, these methods are not directly applicable to the problems
of interest here in which more than two phases coexist or another phase may result from chemical reactions or phase
changes.

The PDE based interface sharpening technique we develop utilizes a combination of an interface function sharpening and
density correction to restrict the thickness of the numerically diffused interface. We use an interface function representing
volume fraction rather than a distance function, as in a level-set description [41,46]. This approach facilitates the expressions
of the thermodynamic properties of the multi-fluid mixture. Our means of capturing the contact discontinuity, both the
interface function and density field, is discussed in Sections 2 and 3. This is the main contribution of the paper, and it is
not directly coupled to any particular overall flow solver. The details of the multi-component compressible flow model
we use and its discretization are provided in Sections 4 and 5, respectively. Results from numerical experiments showing
the accuracy and stability of the proposed technique are presented in Section 6. These include liquid–gas systems with den-
sity ratios of up to 103, flows with topological changes, and a three-component system with van der Waal’s gas, stiffened, and
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Mie-Grüneisen equations of state. A proof of the conservation properties of the scheme is provided in Section 7, before the
conclusions.

2. Interface function equation

2.1. Background

In the multi-phase modeling approach discussed here, an interface function / is used to distinguish between the two flu-
ids. This function takes the values / = 0 or / = 1 in the pure fluids on either side of the interface. The generally sharp bound-
ary between immiscible materials is modeled by the smooth variation of / between these limits. With this definition, the
motion of the interface is governed by an advection equation for this interface function
@/
@t
þ u � r/ ¼ 0; ð1Þ
where u is the fluid velocity. Note that this equation is strictly defined at a fixed value of /, a level set that defines the inter-
face, and is a Lagrangian statement of the movement of the material interface separating two fluids. Without additional care,
numerical solutions of (1) using methods compatible with shock capturing techniques in multiple dimensions will diffuse
the interface, causing the transition from / = 0 ? / = 1 to occur over an increasingly wider region of space as time increases.

In order to maintain a consistently sharp interface in incompressible flows, Olsson et al. [40] added an additional term to
the right-hand side of (1) that restores, or regularizes, the missing immiscibility condition of the two fluids:
@/
@t
þ u � r/ ¼ Uor � ð�hnðn � r/Þ � /ð1� /ÞnÞ; ð2Þ
where n =r//jr/j is the local interface normal, �h is a length-scale of the order of the grid spacing, and Uo is the character-
istic compression velocity of the interface sharpening, much larger than kuk1. We are interested in small �h and large Uo

since this corresponds to thin material interfaces. For this case, the solution of (2) can be decomposed into fast and slow
parts, the fast part governed by Uo and the slow by the local velocity u. In one space dimension, the fast solution is
/ ¼ 1

1þ exp � n
�h

� � ¼ 1
2

1þ tanh
n

2�h

� �� �
; ð3Þ
where n denotes the spatial coordinate normal to the interface with respect to the center of the interface, / = 1/2. The cor-
rection term on the right-hand side of (2) combines diffusive and compressive fluxes such that the interface thickness re-
mains approximately proportional to �h, where �h is small. Note that the correction term is only non-zero for 0 < / < 1, so
(2) reverts back to (1) under simultaneous refinement of the mesh and �h (see Section 7). Moreover, the actual value of
Uo is immaterial in practice since when it is sufficiently large (3) is independent of Uo.

2.2. Reformulation

The idea behind (2), where the one-dimensional solution is (3), can be generalized to multiple dimensions in several
ways. The divergence form in (2), originally proposed by Olsson et al. [40], is just one possibility. Another possibility is to
project the gradient of
K ¼ �hjr/j � /ð1� /Þ; ð4Þ
in the normal direction, giving
@/
@t
þ u � r/ ¼ Uon � r �hjr/j � /ð1� /Þð Þ: ð5Þ
In one dimension there is no difference between (2) and (5) because n = ±1. It will be shown that the multidimensional form
(2) does not perform as well as the one-dimensional version and we propose an improvement to alleviate the observed prob-
lems and generalize to compressible flow.

One can anticipate that the compression term in (2) can potentially yield spurious behavior under some circumstances by
considering
r � ð�hnðn � r/Þ � /ð1� /ÞnÞ ¼ Kðr � nÞ þ n � rK ¼ Kðr � nÞ þ @K
@n

: ð6Þ
In the limit Uo !1; K ¼ 0 and the profile (3) results. However, for finite Uo and finite grid resolution, K – 0. In this case, (6)
implies that the interface is being changed both normally and tangentially depending on the strength and accuracy of the
curvature evaluation, r � n. Further discussion and demonstration calculations are provided below.

Finally, in incompressible flow applications the velocity field is solenoidal and the advection term in (2) can be
rewritten in conservation form r � (/u). This allows immediate discrete mass conservation using the standard, flux-based,
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discretization practice. In compressible flow applications, it is best to craft (2) or (5) in an appropriate conservation form
using the mass conservation equation for one of the fluids, giving
Fig. 1.
the line
@ðq1/Þ
@t

þr � ðq1/uÞ ¼ q1Uon � rð�hjr/j � /ð1� /ÞÞ; ð7Þ
where q1 is the density of the fluid labeled ‘1’, see Section 4.

2.3. Calculation of normals

As in the case of shocks, the representation of sharp physical interfaces by our model is most realistic if their thickness is
minimized. This corresponds to taking �h as small as possible. However, accurate computation of the gradients of /, including
those that define n, are well-behaved only if / is sufficiently resolved on the computational mesh. Otherwise, numerical arti-
facts appear and quickly disrupt the attractive properties of (2). This is counter to the modeling objective of maintaining a
sharp interface. A similar situation led Desjardins et al. [11] to propose an alternative method for calculation of interface nor-
mals, which are particularly important for evaluating the right-hand side of (7). In their method, the distance function d is
computed from / using
/ ¼ 1

1þ exp d
�h

� � ; ð8Þ
for points close to the interface. Away from the interface, where / is either one or zero, it is not possible to compute d from /
using (8). Therefore, the Fast Marching Method [46] was employed to construct a distance function for points away from the
interface, which was subsequently utilized to determine the normals. An alternative and less demanding approach is to avoid
using / directly when computing n and, instead, use an auxiliary function w(/), which is designed to have the same normal
but which is smoother for better estimates of its gradients. We obtained good results with
w ¼ /a

/a þ ð1� /Þa
; for a < 1: ð9Þ
The width of the hyperbolic tangent profile for w is 1/a times that of /. As shown in Appendix A, a small value of a will alle-
viate the problems associated with resolving the steep gradients of /. This approach can be used in multiple dimensions by
taking the gradient of both sides of (9) and solving for r/, giving
r/ ¼ rw
a
ð/ð1� /ÞÞ1�að/a þ ð1� /ÞaÞ2; ð10Þ
which is then used to calculate n =r//jr/j =rw/jrwj. Fig. 1 shows example contours of / and w, computed using a = 0.1
and �h = 0.5h, for one of the two lobes that results from fragmentation of a cylindrical helium bubble in the example of Sec-
tion 2.4 (see Fig. 2).
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Isolevels of / and w (for a = 0.1) computed for the air–helium shock–bubble interaction considered in Section 2.4. Inset depicts the functions along
x = 5.0.



Fig. 2. Interface function contours as a function of time for Mach 1.22 air–helium shock–bubble interaction computed using the conservative interface
function method given by (2) (left), no interface compression (center), and modified interface function method given by (5) (right).
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The mapping (9) is clearly such that the isopleth defining the interface is unchanged by the nonlinear mapping of / to w.
We can expect that finite-difference computation of n will be more accurate based upon w than / simply because w is
smoother and therefore its numerical differentiation yields smaller truncation errors. A general proof of this is provided
in Appendix A, with specific expressions evaluated for the current second-order scheme, where an error bound is developed.
Small a reduces errors associated with planar (�a2) and regular (�a) curvature terms. Errors associated with second-order
curvature is not reduced as a ? 0, but these terms will be small for well resolved and sufficiently smooth interface shapes.

It is important to note that w becomes constant w ? 0.5 as a ? 0. For this reason, too small a will suffer from round-off
errors that will be dominant, irrespective of the value of /. In this case, the advantage of using w in place of / is lost. Our
choice of a = 0.1 ensures that the relative error in computation of normals from the mesh-representable auxiliary function
w remains less than 1%.
2.4. Demonstration

For general compressible flows involving interactions of shock waves with multi-fluid interfaces, the application of the
interface compression scheme (2) can give rise to oscillations in /. To demonstrate this problem we simulate an air–helium
shock–bubble interaction, which is a common test case [42,22,12,6,18,34]. A standard multi-fluid compressible flow model
and TVD finite-volume shock-capturing method are used; discussed in more detail in Sections 4 and 5, respectively. Calcu-
lations are carried out using (2) and the modified interface function method (5) along with a density correction technique
described in the next section. The results obtained from the two methods are shown in Fig. 2 along with those obtained with-
out any interface compression. We see that the original method develops fine-scale oscillations, which continue to grow in
time and corrupt the solution. As evident in Fig. 2, these spurious features persist with increased grid resolution (Fig. 2(b))
and increased interface thickness �h (Fig. 2(c)). As depicted in Fig. 2(d)–(f), simulations which do not use interface compres-
sion continue to diffuse the interface function in time, irrespective of the grid resolution. In contrast, computations utilizing
the new modified interface method are oscillation free and remain smooth even after the interface breaks up (Fig. 2(g)–(i)).
Moreover, the new formulation appears to show well-behaved convergence as the mesh is refined. Further assessment of the
method is provided in Section 6, after we discuss the full scheme in the following sections.

One could argue that it should be possible to achieve discrete conservation by using (2) provided errors (such as those
depicted in Fig. 2) are reduced and kept under control by using more accurate schemes for discretizing it. However, more
accurate schemes which are based on higher-order discretization (WENO, HOUC) are not TVD. Application of such schemes
results in spurious oscillations so that the volume fraction / does not remain bounded and attains values that are less than
zero and greater than one. The spurious oscillations generated by more accurate schemes leads to a loss of robustness
through creation of unphysical thermodynamic states, which limits their applicability to multi-phase compressible flows.
The target applications of this paper involve large density variations and strong shocks, and it is important to ensure that
both advection and interface compression discretizations do not produce new extrema in /. In order to achieve this objective
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we have utilized a TVD based advection method for /. As shown in Section 5.2 our interface compression method does not
generate spurious oscillations in / and q.

3. Density correction

For incompressible flows, where this type of interface sharpening has been applied in the past [40], the density of each
fluid is fixed and thus uniquely set by /. In the present case of compressible flow, the fluid density q will in general vary
independently of /, which only serves to distinguish the materials across interfaces. Neither of these alone is sufficient to
uniquely determine the interface location and the fluid density. However, like /, q gradients at interfaces will also diffuse
in time, and it is desirable to suppress this for the same reasons that we sought means of suppressing the diffusion of /. Fol-
lowing the approach for /, we will identify means of modifying the density equation,
@q
@t
þr � ðquÞ ¼ 0; ð11Þ
to suppress artificial mass diffusion. Velocity and pressure are, of course, also subject to numerical diffusion, but these are
both continuous across contacts and so do not require any special treatment outside the standard techniques for capturing
shocks.

Ideally, one would like to obtain the same steep profile for q as for the sharpened /, but this is fundamentally more dif-
ficult because q does not have prescribed values away from the interface. A q equation analogous to (5) might provide a rea-
sonable model for liquids, for which the density will not change much, but for a collapsing gas bubble, the density away from
the interface changes by orders of magnitude. Therefore, suppression of numerical thickening of the density at the contact
surface needs to be done in a way that is insensitive to the density values in the vicinity of the interface. With the interface
already determined by /, we can stipulate that q and / gradients normal to interface are related:
qn ¼ n � rq ¼ C/n; ð12Þ
where C is some scalar. This relationship is exact when q is constant on each side of the interface, since q = q1/ + q2(1 � /),
where q1 and q2 denote densities of the two fluids. Assuming (12) is thus tantamount to assuming that the density gradient
in the smoothed representation of the material boundary is much greater than the density gradients in either of the two
materials, which corresponds precisely to the situation where the density interface would be better modeled if sharpened.
Taking a derivative of (12) in the n direction and multiplying by �h, we have
�hqnn ¼ �hC/nn ¼ Cð�h/nÞn: ð13Þ
As will be confirmed in Section 7, K in (4) approaches zero for large Uo. Therefore, we can assume K � 0 and differentiate (4)
with respect to n such that (�h/n)n � (/(1 � /))n, and after replacing the last term in the right-hand side of (13) obtain
�hqnn ¼ Cð/ð1� /ÞÞn ¼ ð1� 2/ÞC/n ¼ ð1� 2/Þqn: ð14Þ
Using this analogous relationship to (5), yields an interface compression technique for the mass conservation equation:
@q
@t
þr � ðquÞ ¼ Hð/ÞUon � ðrð�hn � rqÞ � ð1� 2/ÞrqÞ: ð15Þ
When qn = C/n, the right-hand side of this equation is clearly zero, otherwise the right-hand side guides q toward this con-
dition without requiring known values for the density on each side of the interface. For compressible flow, q needs to evolve
independently of / outside the compressed region, so we localize the compression to the interface region with the H(/) func-
tion in (15). Our numerical experiments indicate that
Hð/Þ ¼ tanh
/ð1� /Þ

10�2

� �2
" #

ð16Þ
is effective.
Interface density sharpening is demonstrated for the flow shown in Fig. 3. A 40 MPa shock collapses a 4 mm diameter

cylindrical air cavity in water. The initial densities of air and water are 1 kg/m3 and 1000 kg/m3, respectively, both at an ini-
tial pressure of 101.3 kPa. Three different simulations, performed using the same resolution (160 points across the initial
bubble) and the same underlying compressible flow solver described in Section 5, are compared: one with no special treat-
ment of the interface, one with just / sharpening, and one with both / and q sharpening. The results are shown in Fig. 4.
Without interface compression, / and q erroneously diffuse the interface throughout the domain (Fig. 4(a) and (d)). The
computation that sharpens only the interface function also results in a qualitatively incorrect behavior: the density field
is clearly smeared, but there is also an unexpected dimple on the trailing edge of the bubble (Fig. 4(b) and (e)). The cause
of this is clear in this particular case. The water density, which is high, diffuses into the low density gas bubble, where it
becomes labeled according to / as a gas. Such numerical diffusion might be acceptable in some circumstances, but here
the bubble is strongly compressed assuming an ideal gas equation of state. Thus, the somewhat high density in the gas
due to the diffused density of the liquid is accentuated many fold, yielding a local density that is many times that of the



Fig. 3. Normalized density gradient contours for collapse of a cylindrical air cavity in water after it is impulsively accelerated by a planar shock with ratio of
400. Times shown are 10, 20, 30 and 35 ls after the shock first encountered the cavity.
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Fig. 4. Density (top) and interface function (bottom) contours at 30 ls for shock induced collapse of air cavity in water using (left) no interface compression,
(center) interface function compression only and, (right) both interface function compression and density correction.
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water. The inertia of this high density ‘‘spot” suppresses its acceleration relative to the rest of the bubble and leads to the
peculiar shape at the trailing edge. Computations using the modified interface function method and the density compression
yield density and interface function profiles that are consistent with each other (Fig. 4(c) and (f)) and without the spurious
trailing edge dimple.

4. Multi-fluid compressible flow model

The previous section discussed the interface capturing aspects of the algorithm. These are coupled with a standard five
equation quasi-conservative model for three-dimensional compressible two-fluid flow:
@ðq1/Þ
@t

þr � ðq1/uÞ ¼ 0; ð17aÞ

@ðq2ð1� /ÞÞ
@t

þr � ðq2ð1� /ÞuÞ ¼ 0; ð17bÞ
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@ðquÞ
@t

þr � ðquuÞ þ rP ¼ 0; ð17cÞ

@E
@t
þr � ððEþ PÞuÞ ¼ 0; ð17dÞ

@/
@t
þ u � r/ ¼ 0: ð17eÞ
The two fluids (1 and 2) are represented in terms of the volume fraction (phase field) of fluid 1, /, with densities q1 and q2,
respectively, and velocity u = (u,v,w)T in the x, y, z directions. The total energy, E, is given by [3] along with appropriate initial
and boundary conditions. The total energy is related to the specific internal energy, e, according to E ¼ qeþ 1

2 qðu2 þ v2 þw2Þ,
where q = q1/ + q2(1 � /) is the density of the mixture. The two components at any point are assumed to have the same
velocity. This five equation model can be derived from the more general compressible two-fluid models, which take into ac-
count pressure non-equilibrium effects [4,23,36,45]. The effects of viscosity, surface tension, heat conduction and mass dif-
fusion are neglected, though we have included viscosity for a particular application [13]. Bubble collapse and other shock–
interface interaction problems considered in this paper typically involve high Weber numbers, and surface tension is not ex-
pected to play an important role in the overall dynamics. Johnsen and Colonius[57], for example, calculate the Weber num-
bers in the range 103–104 based on maximum jet velocity and jet size for collapse of a 10 lm bubble in water by a pressure
ratio of 71.

An equation of state is required to close the equations. We assume general equation of state relationships for the two flu-
ids qiei = qiei(qi,Pi) for i = 1, 2, with qei = /q1e1 + (1 � /)q2e2 and total pressure P = /P1 + (1 � /)P2. A relationship for the mix-
ture equation of state of the form P = P(/,q1/,q2(1 � /),qe) is also needed. Following previous analysis by Allaire et al. [3] we
assume an isobaric closure, which yields
P1ðq1;q1e1Þ ¼ P2ðq2;q2e2Þ ¼ P; ð18aÞ
/q1e1 þ ð1� /Þq2e2 ¼ qe: ð18bÞ
Simultaneous solution of (18a) and (18b) gives the pressure P for the mixture in terms of volume fraction, mass fraction, and
total energy of the mixture. While a general expression for the mixture pressure P can not always be derived, a closed form
relationship can be obtained when the two phases are modeled using a Mie-Grüneisen equation of state, which is fairly flex-
ible. Thus we have Piðqi;qieiÞ ¼ ½ciðqiÞ � 1�qiei � ciðqiÞP

1
i ðqiÞ for i = 1, 2 along with mixture rules:
P ¼ ðc� 1Þqe� cP1; ð19aÞ
1

c� 1
¼ /

c1ðq1Þ � 1
þ 1� /

c2ðq2Þ � 1
; ð19bÞ

P1 ¼ c� 1
c

/
c1ðq1ÞP

1
1 ðq1Þ

c1ðq1Þ � 1
þ ð1� /Þ c2ðq2ÞP

1
2 ðq2Þ

c2ðq2Þ � 1

� �
: ð19cÞ
It can be shown that the five equation model reduces to a four equation model given by (11), (17c), (17d), and (17e) when the
two phases are governed by the stiffened equation of state, which can also be parameterized to model an ideal gas. This mod-
el has been used successfully in the analysis of shock–interface interactions in previous work [1,44,47,22,13]. Though we use
it in demonstration simulations in Section 6, its details are not instructive for the present objectives and for brevity the de-
tailed analysis of the five equation model is not presented here. We refer readers to references containing its full details
[3,36,45]. We also mention that the application of this interface model is not restricted to the particular equations of state
used in our demonstration made in this work; the general formulation has been shown to be successful when applied to
more complicated or even tabulated equations of state [3]. The complete model, including interface compression, is given
by (17a), (17b), (17c), (17d), (5) and (15).

In order for the interface compression technique to achieve its goal, Uo must be large. This implies that the correction
terms introduce numerical stiffness and appropriate time integration techniques are needed. In the present applications,
we use a time splitting technique, whereby the density and interface function equations are split into an advection stage
qt þr � ðquÞ ¼ 0;
ðq1/Þt þr � ðq1u/Þ ¼ 0;
solved using a standard approximate Riemann solver method, followed by a compression step,
qs ¼ Hð/Þn � ðrð�hn � rqÞ � ð1� 2/ÞrqÞ; ð20Þ
/s ¼ n � rð�hjr/j � /ð1� /ÞÞ; ð21Þ
in pseudo-time s ¼ t Uo (having units of length-scale). The latter is advanced to equilibrium with a substep Ds and the spa-
tial derivatives use a centered second-order accurate finite-volume discretization. For the demonstration simulations, we
took Ds = 0.2h. Note that integrating (20) and (21) to a s-steady state is consistent with Uo !1, a specific value of Uo is
not required for this solution method.
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5. Numerical discretization

5.1. Compressible flow solver

For our demonstration simulations, the governing equations are discretized on a uniform fixed Cartesian mesh with equal
spacing in all coordinate directions: Dx = Dy = Dz = h and Nx, Ny, and Nz points in the x, y, and z directions, respectively. We
follow the common reconstruct-and-evolve strategy within a finite-volume framework as described elsewhere [55,29]. We
employ a TVD reconstruction with the Minmod limiter [29,55]. In the present work, we use the HLLC approximate Riemann
solver for its good resolution of shocks and its positivity of density and internal energy [54]. Upwind fluxes for the advection
equation for interface function (17e) are calculated as a part of the two-fluid Riemann problem using the contact velocity
from HLLC solver. Time integration is performed using a strong-stability-preserving third-order Runge–Kutta method
[16]. All demonstration simulations were advanced with a CFL time step criterion of 0.3. Note that this choice of CFL number
is just a conservative one and all the test cases presented in the paper run stably with a CFL number of 1.0. Additionally, the
interface compression technique is general and can be easily combined with other time integration methods [13].

At this point we also mention that multidimensional shock-capturing methods based on solution of the normal direction
Riemann problems can fail due to numerical instability when high shear rates are involved [44,48]. This is linked to the fact
that methods based on solution of normal Riemann problems (HLLC, or exact Godunov) may not add sufficient numerical
dissipation to the tangential velocity field, which is treated as a passive scalar. This indeed can be a problem, but it is asso-
ciated with the Riemann solver and is therefore distinct from the objectives of this paper. Cures to this problem involve con-
struction of more robust Riemann solvers, and its investigation is beyond the scope of this paper.

5.2. Discretization of the phase field equation and density correction

The pseudo-time evolution of the compression algorithm, (20) and (21), use a standard second-order method, according to
d/ijk

ds
¼ �nx

ijk

fiþ1=2;jk � fi�1=2;jk

Dx

� �
� ny

ijk

gi;jþ1=2;k � gi;j�1=2;k

Dy

� �
� nz

ijk

hij;kþ1=2 � hij;k�1=2

Dz

� �
; ð22Þ

dqijk

ds
¼ �ð1� 2/ijkÞ nx

ijk

qiþ1;j;k � qi�1;j;k

2Dx
þ ny

ijk

qi;jþ1;k � qi;j�1;k

2Dy
þ nz

ijk

qi;j;kþ1 � qi;j;k�1

2Dz

� �
� nx

ijk

�f iþ1=2;jk � �f i�1=2;jk

Dx

 !

� ny
ijk

�gi;jþ1=2;k � �gi;j�1=2;k

Dy

� �
� nz

ijk

�hi;j;kþ1=2 � �hi;j;k�1=2

Dz

 !
; ð23Þ
where the indexes of the discretized cells are denoted by i, j, k, the normal vector is given by nijk ¼ ðnx
ijk;n

y
ijk;n

z
ijkÞ, where
nijk ¼
ðrwÞijk
jðrwÞijkj

;

and
ðrwÞijk ¼
wiþ1;jk � wi�1;jk

2Dx
;
wi;jþ1;k � wi;j�1;k

2Dy
;
wij;kþ1 � wij;k�1

2Dz

� �
:

The compression fluxes f and �f in the x direction at the (i + 1/2, j,k) cell faces are computed using
fiþ1=2;jk ¼ ð/ð1� /ÞÞiþ1=2;jk � �hðjr/jiþ1=2;jkÞ;

�f iþ1=2;jk ¼ ��h

r/iþ1=2;jk � rqiþ1=2;jk

jr/jiþ1=2;jk

 !
;

where
½/ð1� /Þ�iþ1=2;jk ¼ /iþ1=2;jkð1� /iþ1=2;jkÞ;

/iþ1=2;jk ¼
/iþ1;jk þ /ijk

2
;

and r/i+1/2,jk is computed from rwi+1/2,jk using (10). These derivatives in turn are approximated as
ðwxÞiþ1=2;jk ¼
wiþ1;jk � wijk

Dx
;

ðwyÞiþ1=2;jk ¼
wiþ1;jþ1;k � wiþ1;j�1;k þ wi;jþ1;k � wi;j�1;k

4Dy
;

ðwzÞiþ1=2;jk ¼
wiþ1;j;kþ1 � wiþ1;j;k�1 þ wi;j;kþ1 � wi;j;k�1

4Dz
:
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Similarly, the compression fluxes in the y direction, g and �g, and in the z direction, h and �h, and the necessary density gra-
dients are computed by the corresponding permutation of indices corresponding to the coordinate direction being consid-
ered. The stopping criteria for the pseudo-time integration requires that the L1 norm of the relative variation of / and q be
less than 10�6. A condition that is satisfied after 5–10 iterations.

An important question of interest is whether the density compression (20) is capable of producing new local maxima or
minima, which might degrade the overall quality of the solution. The particular concern, of course, is that the density should
remain positive, which is easily violated at high density ratio interfaces unless special attention is given to the discretization.
However, for the compression term we propose, this attractive property only requires that �h P 0.5h, where h denotes the
grid spacing. To show this, at least in one dimension, we consider (20) using the second-order accurate approximations de-
scribed above and first-order time integration with pseudo-time index m, giving
qmþ1
i ¼ qm

i � Cm
i�1ðqm

i � qm
i�1Þ þ Dm

i ðqm
iþ1 � qm

i Þ; ð24Þ
where
Cm
i�1 ¼

�h

h2 DsHi þ
ð1� 2/iÞ

2h
DsHini; ð25Þ

Dm
i ¼

�h

h2 DsHi �
ð1� 2/iÞ

2h
DsHini ð26Þ
with Hi = H(/i) and ni = sgn(/i+1 � /i�1). The scheme is positivity preserving (TVD), if Ci�1 P 0, Di P 0, and Ci + Di 6 1 "i ([20]
and Theorem 6.1 from [29]), i.e.
�h

h
þ ni

1� 2/i

2
P 0 ð27Þ

�h

h
� ni

1� 2/i

2
P 0; ð28Þ

Ds �hðHi þ Hiþ1Þ
h2 þ 1� 2/iþ1

2h
Hiþ1niþ1 �

1� 2/i

2h
Hini

� �
6 1; ð29Þ
Since Hi > 0,�1 6 1 � 2/i 6 1, and ni = 1 or �1, �h P 0.5h is needed for the scheme to be TVD. A limit on the pseudo-time step
is also found using this same theorem, Ds 6 h2/(h + 2�h), which given the restriction on �h implies Ds 6 h/2. In forming these
inequalities, we recognize that the maximum value of Hi is unity. Using the generalized form of Theorem 6.1 from [29] in
which coefficients Ci, Di can be a function of /i it can be shown that the interface compression technique given by (5) is also
monotonic if �h P 0.5h. The proof is very similar to the one described above and is not presented here for brevity. Thus, both
the interface compression and the density correction techniques introduced in Sections 2 and 3 are TVD provided �h P 0.5h.

Finally, interface compression alters the density and interface function and the resulting flow field will not satisfy the
condition of uniform pressure and velocity across the multi-material interface. This can have deleterious effects when strong
shocks encounter interfaces with significant changes in equation of state. In general, it would be necessary to modify all the
state variables, in accordance with the altered density and interface function, to enforce continuity of pressure and velocity.
In our implementation, this task is accomplished by first computing primitive variables before applying the interface com-
pression technique. The parameters in the equation of state relationship are then computed using the modified interface
function in order to estimate conserved variables. The complete compressible multi-component flow algorithm with conser-
vative vector of state U = (q,q/,qu,qv,qw,E) from time step l to l + 1 is summarized as follows:

(i) Compute left and right states at cell faces UL,UR from the cell centered values Ul.
(ii) Compute fluxes using the HLLC approximate Riemann solver and update the conserved variables from Ul to U*.

(iii) Compute primitive variables (q,u,v,w,P,/) from conserved variables U*.
(iv) Iterate interface function equation and density compression to s-steady state (until the convergence criteria is satis-

fied), m-iterations.
(v) Define conserved variables at the end of the time step, Ul+1, from primitive variables of U* and the new values of q and

/ function from (iv).

6. Demonstration calculations and additional discussion

In this section we begin by demonstrating the technique on one-dimensional Riemann problems for which exact analyt-
ical solutions are available. This is followed by simulations of two-dimensional shock–interface interactions. The method is
subsequently applied to a three-dimensional bubble collapse adjacent a model wall. Several examples are shown to demon-
strate that the same algorithm, without adjustments, can be used to simulate a range of different conditions. Following the
analysis detailed in the preceding section, the parameters a = 0.1 and �h = h/2 are used in all the test cases. Outflow boundary
conditions are approximated by using ghost cells with values extrapolated from appropriate adjacent interior cells [29].
Reflecting boundary conditions at solid walls are modeled in a similar way except that the sign of momentum in the wall
normal direction is reversed.
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6.1. One-dimensional tests

6.1.1. Air–helium interaction
Following [2], we consider a stiff two-fluid one-dimensional Riemann problem with initial condition
ðq;u; PÞ ¼
ð1;0;500Þ for 0 6 x 6 0:5;
ð1;0;0:2Þ for 0:5 < x 6 1;

�

/ ¼ 1
2

1þ tanh
x� 0:5

2�h

� �� �
;

c ¼ 1þ ðc2 � 1Þðc1 � 1Þ
/ðc1 � 1Þ þ ð1� /Þðc2 � 1Þ ;

ð30Þ
where the specific heat ratio of air and helium are c1 = 1.4, and c2 = 1.6, respectively. Solutions to this problem are computed
both with and without interface compression on a uniform grid with 800 grid points, and the results are plotted in Fig. 5. We
note that the solutions computed using the interface compression technique maintain a constant interface thickness of a few
grid cells throughout the computations, whereas the one without compression shows ongoing diffusion. The computed solu-
tions are oscillation free and are in excellent agreement with the exact solution.

6.1.2. Water–air shock–interface interaction
Next we consider a model one-dimensional problem of a water–air interface accelerated by a strong shock in water.

Since the acoustic impedance of water is significantly higher than that of air, a strong rarefaction wave is reflected back
while a weak shock is transmitted through the air. The incident shock Mach number is 1.8815, which produces a large
difference in the reflected rarefaction head and tail speeds: �2.334 � 102 for the head and 2.684 � 10�2 for the tail. This
is a challenging test case and conventional shock-capturing methods have been shown to yield inaccurate numerical solu-
tions for similar single-fluid problems involving high density and pressure ratios [51,27]. The initial condition for this
problem is
ðq;u; PÞ ¼ ð1:362;81:25;2:484� 104Þ for 0 6 x 6 0:2;
ð1� 0:999/;0;1Þ for 0:2 < x 6 1;

(

/ ¼ 1
2

1þ tanh
x� 0:5

2�h

� �� �
;

c ¼ 1þ ðc2 � 1Þðc1 � 1Þ
/ðc1 � 1Þ þ ð1� /Þðc2 � 1Þ ;

P1 ¼ c� 1
c

c1P11 ð1� /Þ
c1 � 1

þ c2P12 /
c2 � 1

� �
;

ð31Þ
where the water is modeled with c1 = 4.4 and P11 ¼ 6000, and the air with c2 = 1.4 and P12 ¼ 0.
Solutions are computed on a uniform grid with and without the interface compression method using 200 and 2000

points as shown in Figs. 6 and 7, respectively. The results are indistinguishable if computed with CFL = 1.0, rather than
0.3. Note that without the interface compression method the solution oscillates significantly, with the pressure becoming
negative in places. These oscillations persist (not shown) even when a first-order reconstruction is used along with an ex-
act Riemann solver. These unphysical oscillations are especially undesirable because when coupled with a cavitation flow
model the numerical computations will predict erroneous formation of vapor phase. On the other hand, simulations uti-
lizing the same flow solver with an interface compression technique remedy this problem and provide a much more accu-
rate solution.

The oscillations in computations without interface compression are most likely linked to the numerical smearing of den-
sity and interface function across the contact discontinuity. The error due to cell averaging in a typical shock-capturing fi-
nite-volume method can be quite significant in presence of strong rarefaction waves and can easily violate the condition of
constancy of pressure and velocity across the contact discontinuity. In order to overcome this problem in single-phase flow
computations with strong rarefaction waves, Kudriakov and Hui [27] utilized a contact-strength preserving technique that
provides a more accurate estimate of flow variables across the contact discontinuity. In the current two-fluid computations
the disparity in the equation of state amplifies the averaging errors. These errors are prominent in simulations without inter-
face compression as growing numerical smearing of the contact discontinuity continues to deteriorate the accuracy of the
computed solution.

6.2. Two-dimensional tests

6.2.1. Collapse of an air cavity in water
The first two-dimensional test case is the collapse of an air cavity in water by a Mach 1.72 shock. This problem has been

studied extensively [19,37,38,21,31] due to its importance in a wide range of physical and practical phenomena such as
sonoluminescence, lithotripsy, and hot-spot formation in explosives. The rectangular computational domain for this problem
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is X = [0,10] � [�2.5,2.5]. An air bubble of unit radius is placed in water with its center at (4.375,0), and the shock wave is
initiated at x = 1 at t = 0. The rest of the initial condition is
ðq;u;v ; PÞ ¼ ð1:325;68:52; 0;1:915� 104Þ if x 6 1;

ð10�3 þ 0:999/; 0;0;1Þ; otherwise;

(

/ ¼ 1
2

1þ tanh
r � 1
2�h

� �� �
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 4:375Þ2 þ y2

q
;

c ¼ 1þ ðc2 � 1Þðc1 � 1Þ
/ðc1 � 1Þ þ ð1� /Þðc2 � 1Þ ;

P1 ¼ c� 1
c

c1P11 ð1� /Þ
c1 � 1

þ c2P12 /
c2 � 1

� �
; ð32Þ
where / = 0 in the air and / = 1 in the water. The equation of state parameters for water and air are set as in the previous
examples.

The rectangular computational domain X is discretized using a 1600 � 800 uniform grid. The flow field at various times
are shown in Fig. 8. The interface remains thin throughout the simulation even after the cavity fragments due to formation
of a high-speed jet. The computed solution shows no spurious oscillations and retains its symmetry about y = 0 even though
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no such constraint was enforced in these simulations. The numerical solution is in good agreement with the results of [37],
obtained using a flux modification method along with structured adaptive mesh refinement.

Following [39], we assess the convergence of the computed solutions by calculating
j/jX ¼
Z

X
/dxdy �

X
i;j

/ijDxDy; ð33Þ
for simulations utilizing grid resolutions of 400 � 200, 600 � 300, 800 � 400, 1200 � 600, 1600 � 800 and 3200 � 1600. We
estimate the numerical errors for the first five coarse grids by treating the solution computed on the finest 3200 � 1600
mesh as the exact reference solution. An estimate of the order of accuracy of the scheme can then be obtained using
p ¼ logðERÞ � logðECÞ
logðNCÞ � logðNRÞ

; ð34Þ
where p, E, and N denote order of accuracy, error and number of computational nodes, respectively. Subscripts C and R refer
to coarse and refined meshes, respectively. Results are presented in Table 1.

6.2.2. Underwater explosion
In this section we simulate the interaction of a highly compressed cylindrical air bubble placed in water beneath a free

surface. This configuration has been considered previously in [33,17,50,37,7] as a model for studying underwater explosions.
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An important challenge of this problem is the topological change in the interface as the bubble bursts through the free sur-
face. The initial condition is
ðq;u;v ; PÞ ¼
ð1:225� 10�3;0; 0;1:01325Þ if y P 0;

ð1:25;0;0;104Þ if r 6 0:12;
ð1;0; 0;1:01325Þ; otherwise;

8><
>:

/ ¼ 1
4

1þ tanh
r � 0:12

2�h

� �� �
1� tanh

y
2�h

� �� �
;

c ¼ 1þ ðc2 � 1Þðc1 � 1Þ
/ðc1 � 1Þ þ ð1� /Þðc2 � 1Þ ;

P1 ¼ c� 1
c

c1P11 ð1� /Þ
c1 � 1

þ c2P12 /
c2 � 1

� �
;

ð35Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðyþ 0:3Þ2

q
and the air and water are modeled as in the previous examples.

Calculations are performed on a computational domain X = [�2,2] � [�1.5,1.5] discretized using a 600 � 450 uniform
grid. Extrapolation boundary conditions are applied on the top (y = 1.5) and side (x = ±2) boundaries of the computational



Fig. 8. Density (left), pressure (center) and interface function (right) contours at times t = 1.0 � 10�2, 1.5 � 10�2, 1.8 � 10�2, and 2.0 � 10�2 (from top to
bottom) for the two-dimensional cavity collapse problem. Contour levels for the interface function range from 0.05 to 0.95.
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domain along with reflecting boundary conditions on the bottom edge (y = �1.5). Fig. 9 depicts the flow field at different
times. In addition to the / and p fields, this flow is also visualized with a numerical schlieren defined as
f ¼ exp �k
jrqj

maxðjrqjÞ

� �
; ð36Þ
where k = 100 if / < 0.5 and 20 otherwise. It is noted that the computed solutions are free of numerical oscillations and agree
well with previously published results. The interface thickness remains constant throughout the simulation both before and
after the interfaces merge.

Next we access the quality of numerical solutions by performing additional calculations using refined grids with
600 � 450 and 800 � 600 nodes. The results depicted in Fig. 10 show good agreement between / = 0.5 isocontour computed



Table 1
Convergence of j/jX at various times for different grid resolutions.

Grid t = 10�2 t = 1.25 � 10�2

j/jX Error p j/jX Error p

400 � 200 2.91777 2.02 � 10�2 – 2.19133 2.02 � 10�2 –
600 � 300 2.90867 1.11 � 10�2 1.48 2.18151 1.04 � 10�2 1.64
800 � 400 2.90447 6.90 � 10�3 1.65 2.17747 6.36 � 10�3 1.71
1200 � 600 2.90084 3.27 � 10�3 1.84 2.17419 3.07 � 10�3 1.79
1600 � 800 2.89937 1.80 � 10�3 2.08 2.17287 1.76 � 10�3 1.94
3200 � 1600 2.89757 – – 2.17111 – –

Fig. 9. Numerical schlieren (left), pressure (center) and interface function (right) contours for the underwater explosion problem at times t = 0.06, 0.25, 0.4
and 0.5 (from top to bottom). Contour levels for the interface function range from 0.05 to 0.95.
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using increasingly refined grids. Of course, as the mesh is refined, there will be times for which the solutions are qualitatively
different simply because smaller features can be resolved. Fig. 10 shows such a time. The more resolved solution can support
a thinner liquid layer above the bubble. In practice, of course, resolution must be selected based upon the simulation objec-
tives, and in some cases additional physical models must be added, such as the viscosity we have used in a specific appli-
cation [13].

6.2.3. Mach 6 shock in air hitting a water cylinder
Now we consider the interaction of a Mach 6 shock in air with a cylindrical water column and demonstrate that the

numerical methodology developed in the preceding sections is also compatible with high-order formulations utilizing



Fig. 10. The 0.5 isopleth of / for the underwater explosion problem at t = 0.25 (left) and t = 0.4 (right) computed on 400 � 300 ð3Þ, 600 � 450 ( ), and
800 � 600 ( ) grids.
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finite-volume WENO reconstruction [53]. Similar problems have been considered previously [37,7]. The initial condition for
this example is
ðq;u;v ; PÞ ¼
ð5:268;5:790; 0;42:39Þ if x 6 1;

ð1þ 999/;0; 0;1:013Þ; otherwise;

(

/ ¼ 1
2

1� tanh
r � 0:562

2�h

� �� �
; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 2Þ2 þ y2

q
;

c ¼ 1þ ðc2 � 1Þðc1 � 1Þ
/ðc1 � 1Þ þ ð1� /Þðc2 � 1Þ ;

P1 ¼ c� 1
c

c1P11 ð1� /Þ
c1 � 1

þ c2P12 /
c2 � 1

� �
;

ð37Þ
where again air and water are modeled as in the previous examples.
The problem is solved on a rectangular computational domain X = [0,8] � [�1,1] discretized using a 2000 � 500 uniform

grid. Extrapolation boundary conditions are applied on the left (x = 0) and right (x = 8) boundaries whereas the top (y = �1)
and bottom (y = 1) solid boundaries are modeled using reflecting boundary conditions. Primitive variables (q, u, v, and P) are
reconstructed [22] using a fifth-order finite-volume WENO scheme developed by Titarev and Toro [53] using Gaussian quad-
rature nodes in each cell, which yields a fourth-order accurate numerical approximation. Note that the contact discontinuity
is captured on the computational grid and its numerical width is determined not by the numerical dissipation of the under-
lying advection scheme but by the interface compression technique (�h). It is necessary to use a monotonicity preserving
(first-order or TVD) advection scheme so that spurious oscillations are not generated and / remains bounded between 0
and 1. WENO provides more accurate solution in smooth regions of the flow field through high-order reconstruction. How-
ever, even a high-order advection scheme based on WENO reconstruction must reduce to first-order close to shocks and con-
tacts in order to remain monotonic. Because the interface function / is constant (0 or 1) away from the discontinuities, there
is no benefit of nominally more accurate reconstruction. Therefore, our reconstruction for / would match the effective local
order of WENO at discontinuities and away from the interface the convergence of the scheme is immaterial since / is con-
stant there. This does not alter the overall accuracy of the scheme and our shock and contact capturing method is as typical
first-order accurate in an L1 norm.

Fig. 11 depicts the flow field evolution through numerical schlieren and interface function contours. The numerical solu-
tion has no obvious oscillations and the interface thickness is confined to a few grid cells throughout the simulation. It is
noted that the numerical method successfully captures apparent interfacial instabilities which develop at later times due
to baroclinic vorticity deposition at the water–air interface. Results of a grid refinement study performed using
500 � 125, 1000 � 250 and 2000 � 500 computational nodes are depicted in Fig. 12. We observe good agreement between
the / = 0.5 isocontours computed using increasingly refined grids.

6.3. Three-dimensional tests

6.3.1. Spherically symmetric problem
In order to validate the numerical methodology in multiple dimensions, we simulate a three-dimensional test case for

which a spherically symmetric reference solution can be computed. The computational domain for this problem is a cube
X = [�1,1]3, with the initial condition



Fig. 11. Numerical schlieren (left) and interface function (right) at time t = 0.25, 0.5, 0.75, 1.5, and 2.15 (from top to bottom) for a Mach 6.0 air–water shock-
cylinder interaction problem, computed using a fifth-order WENO scheme on a 2000 � 500 uniform grid. Contour levels for the interface function range
from 0.05 to 0.95.
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q ¼ 1:2H1 þ 10�3H2 þ ð1� H1 � H2Þ;
u ¼ 0;

P ¼ 104 if r 6 0:25;
1; otherwise;

(

/ ¼ H1 þ H2;

H1 ¼
1
2

1� tanh
r � 0:25

2�h

� �� �
;

H2 ¼
1
2

1þ tanh
r � 0:75

2�h

� �� �
;

c ¼ 1þ ðc2 � 1Þðc1 � 1Þ
/ðc1 � 1Þ þ ð1� /Þðc2 � 1Þ ;

P1 ¼ c� 1
c

c1P11 ð1� /Þ
c1 � 1

þ c2P12 /
c2 � 1

� �
;

ð38Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the air and water are modeled as before. The simulation uses two sets of uniform computational

grids with 121 and 241 cells in each direction. Extrapolation boundary conditions are applied on all six sides of the cubic
computational domain. A comparison of the three-dimensional results along the positive x axis with the reference solution,
obtained by solving the one-dimensional Euler equation with appropriate geometric source terms on a 10,000-point mesh, is



Fig. 12. The 0.5 isopleth of / for the Mach 6.0 air–water shock-cylinder interaction problem at t = 0.5 (left) and t = 0.75 (right) computed on 500 � 125 ð3Þ,
1000 � 250 ( ), and 2000 � 500 ( ) grids.
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depicted in Fig. 13. We observe good agreement between the computed results and the reference solution and the interface
is captured accurately in three to four grid cells.

6.3.2. Three-dimensional bubble collapse
The final example is concerned with collapse of two air bubbles in water in the vicinity of a solid wall, attempting to mod-

el the phenomena of cavitation damage. A schematic of the problem is shown in Fig. 14. This problem is, in a sense, the most
challenging because it tests the robustness of the proposed method for problems involving more than two phases, which are
modeled using complicated equations of state in three dimensions. For simplicity, the solid is assumed to be fluid-like so that
governing equations for multi-fluid compressible flow still hold. The following Cochran and Chan [10] equation of state for
copper is used to model the solid,
P ¼ ðc1 � 1Þqe� ððc� 1Þqe0ðqÞ � P0ðqÞÞ;
where
P0ðqÞ ¼ A1
q0

q

� ��E1

� A2
q0

q

� ��E2

;

e0ðqÞ ¼ �
A1

q0ð1� E1Þ
q0

q

� �1�E1

� 1

( )
þ A2

q0ð1� E2Þ
q0

q

� �1�E2

� 1

( )
� cvT0;
were c1 = 3, cv = 393, A1 = 1.45667 � 106, A2 = 1.47751 � 106, E1 = 2.994, E2 = 1.994, T0 = 300 � 10�5, and q0 = 8.9. Real gas ef-
fects are accounted for using the following van der Waal’s equation of state for the air bubbles
P ¼ c2 � 1
1� bq

ðqe� aq2Þ � aq2; ð39Þ
where c1 = 1.4, a = 5, and b = 1. The liquid phase is assumed to be sufficiently well described by the stiffened equation of state
for water P ¼ ðc3 � 1Þqe� c3P13 , with c3 ¼ 4:4; P13 ¼ 6� 103. The initial condition is
ðq;u;v ;w; PÞ ¼

ð1:016;2:541;0; 0;405:3Þ if x 6 0:1;
ð8:9;0; 0;0;1:013Þ if x P 1:25;

ð10�3;0;0;0;1:013Þ if r1 6 0:15 or r2 6 0:2;
ð1; 0;0; 0;1:013Þ; otherwise;

8>>><
>>>:

/g ¼ 1� 1
2

tanh
r1 � 0:15

2�h

� �
� 1

2
tanh

r2 � 0:2
2�h

� �
;

/s ¼
1
2

1� tanh
1:25� x

2�h

� �� �
;

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:75Þ2 þ ðy� 0:75Þ2 þ ðz� 0:45Þ2

q
;

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ2 þ ðy� 0:3Þ2 þ ðz� 0:5Þ2

q
;

ð40Þ
where the interface functions /s and /g are unity in solid and gas, respectively, and zero outside.
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Fig. 13. Solution of the three-dimensional spherically symmetric problem given by (38) computed on a uniform grid with 121 ( ) and 241 cells ( ) in each
direction at t = 2.5 � 10�3. Solid black lines depict the reference solution computed using one-dimensional Euler equations with appropriate geometric
source terms.
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This problem is simulated on a computational domain X = [0,2] � [0,1.25] � [0,1] which is discretized using a
200 � 125 � 100 uniform grid. The flow evolution is depicted in Fig. 15. The incident shock moves in the positive x direction
and its interaction with the two air bubbles leads to reflection of strong rarefaction waves (Fig. 15(a) and (b)). At a later time,
the incident shock reaches the solid–liquid interface and as shown in Fig. 15(c), a shock is transmitted in the solid (TS)
whereas another is reflected back (RS) into the liquid. The volume of the air bubble starts decreasing and reaches a minimum
under the effect of high ambient pressure in Fig. 15(d). Subsequent collapse and jetting of the smaller air bubble is accom-
panied by a spherical blast wave seen in Fig. 15(e). Fig. 15(f)–(h) shows the asymmetric collapse of the larger bubble and its
subsequent jetting. The jet eventually reaches the solid wall and causes it to deform as evidenced in the interface function
iso-surfaces shown in Fig. 16. In order to access the quality of the computed solutions we perform a convergence study using
three different computational grids with 120 � 75 � 60, 160 � 100 � 80 and 200 � 125 � 100 nodes. The computed solution
shows reasonably good convergence as evident from the /g = 0.5 and /s = 0.5 isocontours along z = 0.5 midplane at t = 0.01
depicted in Fig. 17.

7. Conservation properties

The interface compression techniques raise natural questions regarding their conservation properties, since they rely on
modifying the governing equations. Usually, conservation is understood as the ability of the discretization to preserve a
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Fig. 14. Schematic for collapse of two air bubbles in water close to a solid wall.
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certain invariant, e.g., mass in a closed or periodic domain. In more general terms, conservation of a discretization is a
statement regarding the convergence of weak solutions of the conservative form of the transport equations as the mesh
is refined [28]. An analysis to establish this behavior of the interface compression methods is presented here.

For simplicity, we consider the one-dimensional form of (7). More general cases will be discussed at the end of this sec-
tion. The starting point is
@q
@t
þ @f ðqÞ

@x
¼ q1ðx; tÞUo

@K
@x

; ð41Þ
where
K ¼ �h
@/
@x
� /ð1� /Þ; ð42Þ
and q = q1/ and f = q1u/, with the boundary conditions /(x ? �1, t) = 0 and /(x ?1, t) = 1. Using an increasing / facilitates
removal in (42) of the absolute value in (4). Furthermore, we define the small nondimensional parameter r, such that
Uo ¼
kuk1
r

; ð43Þ
where kuk1 denotes the maximum norm in space and time. For �h ? 0 and r ? 0, it is possible to formally develop an
asymptotic solution of (41) which is uniformly convergent for r < rc, for some constant rc possibly dependent on �h but
independent of kuk1. First, we define a stretched inner variable
g ¼ x� xiðtÞ
�h

; ð44Þ
where the location of the center of the interface with initial position xo, /(xo,0) = 1/2, is governed by
dxi

dt
¼ u�ðtÞ; ð45Þ
where u*(t) is certainly equal to u(xi(t), t) when u(x, t) is smooth and it will take a particular value shown below if a shock
coincides with xi(t). We incorporate the ansatz that / varies in a region of thickness �h around xi and we will latter verify
that this is indeed the case. Furthermore, we assume that �h and r are made small simultaneously according to
�h ¼ Lor; ð46Þ
where Lo denotes the smallest physical length-scale in the flow; this ensures that the physical processes are separate from
the artificial compression processes. Now that �h and r are related, the corresponding inner expansion, valid in a region
where jgj = O(1), has the form
/ ¼ /o þ r/1 þ r2/2 þ � � � ; ð47Þ



Fig. 15. Pressure iso-surfaces as a function of time for collapse of two air bubbles in water. Each plot shows 30 isocontours between Pmin and Pmax with red
and blue colors representing maximum and minimum, respectively. Bubbles are depicted as a three-dimensional gray surface. Letters indicate the incident
shock (IS), the reflected rarefaction wave (RR), the transmitted shock (TS) and the reflected shock (RS). (For interpretation of the references in colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Three-dimensional surface of interface functions (top) /s and (bottom) /g at times t = 0.0100, 0.0160, 0.0175, and 0.0185 (from left to right) for
collapse of two air bubbles in water located close to a solid wall.
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Fig. 17. The 0.5 isopleth of /g and /s along z = 0.5 plane for the three-dimensional bubble collapse at t = 0.01 computed on 200 � 125 � 100 ð3Þ,
160 � 100 � 80 ( ), and 120 � 75 � 60 ( ) grids.
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where /o,/1,/2, . . ., are functions to be determined. Introducing these new variables and functions into (41), gives
r �h
@q
@t
þ @f
@g
� u�ðtÞ @q

@g

� �
¼ q1kuk1

@k
@g

; ð48Þ
where
k ¼ @/
@g
� /ð1� /Þ: ð49Þ
Expanding k according to
k ¼ ko þ rk1 þ r2k2 þ � � � ð50Þ
and grouping terms of the same order in r, gives
ko ¼
@/o

@g
� /oð1� /oÞ; ð51Þ

k1 ¼
@/1

@g
� /1ð1� 2/oÞ; ð52Þ

k2 ¼
@/2

@g
� /2ð1� 2/oÞ þ /2

1; ð53Þ

..

.
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Since q1 > 0, the leading order solution in r to (48) is
@ko

@g
¼ 0; ð54Þ
or, equivalently, ko constant. The value of this constant can be determined by matching the solution to outer expansions to
the left and right of the interface. These outer expansions can be expressed as
U ¼ Uo þ rU1 þ r2U2 þ � � � ; ð55Þ
where Uo,U1,U2, . . . , denote two sets of functions at each side of the interface. (Strictly speaking we should denoted them by
U	i , but it will be shown below that there is no need to complicate the notation since they can be determined easily.) The
resulting outer equations are obtained from
r @q
@t
þ @f
@x

� �
¼ q1 kuk1

@K
@x

; ð56Þ
where
K ¼ �h
@U
@x
�Uð1�UÞ: ð57Þ
Expanding K according to
K ¼ Ko þ rK1 þ r2K2 þ � � � ; ð58Þ
and identifying terms gives
Ko ¼ �Uoð1�UoÞ; ð59Þ

K1 ¼ Lo
@Uo

@x
�U1ð1� 2UoÞ; ð60Þ

K2 ¼ Lo
@U1

@x
�U2ð1� 2UoÞ þU2

1; ð61Þ

..

.

Then, to leading order, the solution of (56) is
@Ko

@x
¼ 0: ð62Þ
Upon using the boundary conditions, it is clear that Uo = 0 or 1 on each side of the interface, so Ko = 0, which is also valid on
both sides of the interface. Matching inner and outer solutions gives (3), to leading order. This solution can be written in
inner coordinates as
/o ¼
1
2

1þ tanh
g
2

� �� �
: ð63Þ
One can carry out the analysis of the higher-order outer expansion terms in (55) and observe that due to the linearity of q
and f on /, all functions are equal to zero, i.e., Ui = 0 for i > 0, to any algebraic order in r. This is the key result since it implies
that the variation of / is confined to a narrow band of thickness O(�h). The fact that the Ui = 0 for i > 0 can be determined
independently of the /i simplifies the analysis greatly, but it does not imply that /i are zero for i > 0. In fact, /1 is determined
from
@fo

@g
� u�ðtÞ @qo

@g
¼ q1kuk1

@k1

@g
; ð64Þ
where qo and fo denote q and f evaluated at /o. The boundary conditions, determined by matching with the outer solution
determined previously, are /1 = 0 at g ? ±1. In some circumstances, e.g., when u(x, t) � u(xi(t), t) + O(�h) and
q1(x, t) � q1(xi(t), t) + O(�h), (64) gives /1 
 0. This can be verified by expanding the expression for qo = q1/o and fo = q1u/o

about x = xi(t). Otherwise, e.g., during a shock interaction where the velocity is not smooth but f is continuous, there may
be a non-zero function /1 that could, in principle, satisfy (64) with /1 – 0. Eq. (64) can be formally integrated if we define
the function g(g, t) via
gðg; tÞ ¼ 1
q1 kuk1

@fo

@g
� u�ðtÞ @qo

@g

� �
: ð65Þ
Time appears only parametrically in (64) and therefore requires no further consideration. Then, the exact integral of (64) is
given by
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/1 ¼
c1 þ

R g
0 cosh2ðg0=2Þ

R g0

0 gðg00; tÞdg00
� �

dg0

cosh2ðg=2Þ
: ð66Þ
The integrals in (66) converge because g goes to zero quickly as jgj?1 due to /o. The only unresolved issue with (66) is that
one cannot determine c1 from the boundary conditions, /1 ? 0 as jgj?1 (this is related to the appearance of exponentially
small terms�cosh�2(g/2)). The constant c1 can be obtained by enforcing that /(0, t) = 1/2, which implies /1(0, t) = 0 and c1 = 0
(since /o(0, t) = 1/2). The analysis presented above for /1 carries over, with minor modifications, to the higher-order terms of
the inner expansion since these equations are linear.

After these, rather lengthy, preliminaries we can address the issue of conservation. We follow the general approach (e.g.
[26], see Section 4.4, pp. 141–156), and seek weak solutions of (41) by multiplication with a smooth (C1) test function of
compact support, u(x, t). Integrating by parts the weak solutions obey
�
Z T

0

Z 1

�1
qut þ fux dxdt þ

Z 1

�1
qðx;0Þuðx;0Þdx ¼ 1

r

Z 1

0

Z 1

�1
uq1kuk1

@K
@x

dxdt: ð67Þ
The issue at hand is whether the term in the right-hand side of (67) approaches zero as r ? 0. This is the general statement
of conservation, which implies among other things that the Rankine–Hugoniot relationships will be satisfied at discontinu-
ities and, therefore, waves propagate at the correct speeds. We presume that the discretization of the term in the left-hand
side will be conservative and so is of not further concern. As we have seen previously, K can be decomposed as an asymptotic
expansion in the small parameter r. Moreover, one can evaluate the integral in the right-hand side of (67) directly using
inner coordinates since the outer expansion is identically zero. Therefore, to leading order, the right-hand side of (67) can
be reduced, using (64), to
1
r

Z 1

0

Z 1

�1
uðxi; tÞq1 kuk1

@k0

@g
þ r @k1

@g
þ � � �

� �
dgdt þ Oð�hÞ ¼

Z 1

0

Z 1

�1
uðxi; tÞq1kuk1

@k1

@g
dgdt þ Oð�hÞ

¼
Z 1

0

Z 1

�1
uðxi; tÞ

@fo

@g
� u�ðtÞ @qo

@g

� �
dgdt þ Oð�hÞ ¼

Z 1

0
uðxi; tÞ fo � u�ðtÞqo½ �1�1dt þ Oð�hÞ � Oð�hÞ; ð68Þ
if u*(t) is defined according to
u�ðtÞ ¼
uðxiðtÞ; tÞ if uðx; tÞ is smooth at x ¼ xiðtÞ;
½fo �
½qo �
; otherwise;

(
ð69Þ
where [ ] denotes the jump in qo and fo across the interface, x! x	i . Obviously, (69) is a result of the correct Rankine–Hugon-
iot relationship and u* is the appropriate speed of the interface. The term O(�h) in (68) arises when u(x, t) is expanded around
x = xi(t) + �hg. In consequence, (67) has the form
�
Z T

0

Z 1

�1
qut þ fux dxdt þ

Z 1

�1
qðx;0Þuðx;0Þdx ¼ r

Z 1

0

Z 1

�1
uFðq1;/;uÞdxdt þ Oðr2Þ; ð70Þ
where we have taken into account that �h = O(r) and F denotes a function of order unity incorporating the left-over terms of
the asymptotic expansion. In particular, if the numerical implementation of the left-hand side of (41) is conservative accord-
ing to [28], the new interface compression will be conservative as well in the limit as r ? 0, since the right-hand side of (70)
goes to zero. This converges to the weak form of (7), with zero right-hand side, when r ? 0. In practice, one is forced to take
�h � h, where h is the numerical grid spacing, in order for the compression terms to be numerically resolved. Therefore, the
method becomes conservative, in the generalized sense, when h ? 0, as proved by [28] for the advection part of the equation.

The generalization to two and three dimensions are straightforward, albeit cumbersome, if the compression term is of the
new form (5), because n � r = @/@n. This immediately allows a local change of variables into normal and tangential coordi-
nates. The asymptotic analysis in the normal direction is analogous to that presented above for the one-dimensional case. If
the compression term is in divergence form, (2), there is an additional curvature term, see (6), which may complicate the
analysis.

8. Conclusions

An interface compression technique is presented in order to counter the diffusion of multi-fluid interfaces in compressible
flows caused by numerical dissipation. A new interface function method is developed in order to overcome the deficiencies
of the original conservative level-set method. A monotonicity preserving density correction technique is developed in order
to ensure the consistency of the numerical solution. The conservation properties of the compression technique, introduced in
the methodology to keep the interface sharp, are shown to converge to the ideal solution with increasing grid resolution. The
PDE based method does not require a priori knowledge of the location of the interface and naturally handles topological
changes including merging and fragmentation. Several numerical examples confirm the utility, accuracy and convergence
of the method. The methodology is not tied to a particular shock-capturing method and simulations are presented using
an HLLC solver and high-order finite-volume WENO reconstruction. The versatility of the proposed technique in simulating
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flows involving more than two phases is demonstrated on a model three-dimensional simulation of the interaction between
collapsing bubbles and an adjacent solid wall.
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Appendix A. Nonlinear mapping error analysis

This appendix develops a truncation error bound that explicitly demonstrates the benefits of using the nonlinear mapping
(9) and the approach introduced in Section 2.3 for the numerical calculation of the interface normals needed by the interface
compression scheme. We will discuss the two-dimensional case since the three-dimensional case is analogous but requires
slightly more cumbersome algebraic expressions.

We start with a solution for the phase field
/ ¼ 1
2

1þ tanh
n

2�h

� �	 

; ðA:1Þ
and its mapped field
w ¼ /a

/a þ ð1� /Þa
; ðA:2Þ
which is monotonic for a < 1. The coordinate n is measured with respect to the / = 0.5 isopleth of (A.1), given by the
curve
x ¼ XðsÞ; ðA:3Þ
where s 2 [0,L] denotes the arc-length and L is the curve length. The usual geometry relations indicate that
n ¼ ðx� XðsÞÞ � n; ðA:4Þ
together with
ðx� XðsÞÞ � t ¼ 0; ðA:5Þ
where n and t denote the normal and tangent vectors, respectively, at the closest point of the curve, s. Note that
(A.5) has at least one solution for an open (periodic) curve and two or more solutions for a closed curve. For this
analysis we assume that the resolution is sufficient so that only the closest solution is relevant. The vectors n and t
are given by
t ¼ dX
ds
¼
� sinðhÞ
cosðhÞ

	 

; n ¼

cosðhÞ
sinðhÞ

	 

; ðA:6Þ
where
sinðhÞ ¼ � dX
ds
; cosðhÞ ¼ dY

ds
: ðA:7Þ
The dependence of the error in the calculation of the normal as a funtion of a is developed from the truncation
errors of the finite-difference operators used to evaluate n. The accuracy of a centered first-derivative approxima-
tion in grid direction x, with spacing Dx, is proportional to the leading order term of the Taylor expansion
according to
Dx/ ¼
@/
@x
þ 1
ðpþ 1Þ!

dpþ1/

dxpþ1 Dxp þ OðDxpþ1Þ; ðA:8Þ
where p is the order of accuracy of the approximation. Retaining the leading order terms, the truncation error of the dis-
cretely calculated normal at any point is given by
Tp½/� ¼ 1
ðpþ 1Þ!jr/j

dpþ1/

dxpþ1 Dxp � 1
jr/j2

@/
@x

dpþ1/

dxpþ1 Dxp @/
@x þ

dpþ1/

dypþ1 Dyp @/
@y

� �
dpþ1/

dypþ1 Dyp � 1
jr/j2

@/
@y

dpþ1/

dxpþ1 Dxp @/
@x þ

dpþ1/

dypþ1 Dyp @/
@y

� �
2
64

3
75: ðA:9Þ
This discretization error needs to be compared with Tp[w] to assess the computational advantage of the mapping. For sim-
plicity, we assume that Dx = Dy = D and consider the case p = 2. For the change of variables (A.2) the following relationships
are needed
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w ¼ f ð/Þ; ðA:10Þ
dw ¼ f 0d/; ðA:11Þ
d2w ¼ f 00ðd/Þ2 þ f 0d2/; ðA:12Þ
d3w ¼ f 000ðd/Þ3 þ 3f 00d/ d2/þ f 0d3/; ðA:13Þ
where f(/) is given by (A.2) and d denotes the differential (infinitesimal difference) operator. Then
T2½w� ¼ D2

3!jr/j

f 000
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d/
dx Þ

3 þ 3 f 00
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d/
dx
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d/
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3 þ 3 f 00

f 0
d/
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dy3 �K @/
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2
4

3
5; ðA:14Þ
where
K ¼ 1

jr/j2
f 000
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d/
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4

þ d/
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4
 !

þ 3
f 00

f 0
d/
dx
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d/
dy

	 
2 d2/

dy2

 !
þ d3/
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@/
@x
þ d3/

dy3

@/
@y

" #
: ðA:15Þ
The derivatives of / with respect to x (and y) are then obtained using (A.1) and the geometrical relationships (A.4) and (A.5),
whose derivatives are given by
@n
@x
¼ nx � t � n @s

@x
þ nn � @n

@x
¼ nx þ

n
2
@ðn � nÞ
@x

¼ nx; ðA:16Þ
and
tx � t � t @s
@x
þ nn � @t

@x
¼ tx �

@s
@x
þ nn � @t

@x
¼ 0; ðA:17Þ
where we have used (A.6) and (x � X) = nn, n � t = 0 and n � n = t � t = 1. The elementary geometrical relationship
@t
@s
¼ differentialðÞjn; ðA:18Þ
where j denotes the curvature, can be used to simplify (A.17):
@s
@x
¼ tx

1� nj
: ðA:19Þ
The second- and third-order derivatives are obtained similarly:
@2n
@x2 ¼

@nx

@x
¼ @nx

@s
@s
@x
¼ n0xtx

1� nj
; ðA:20Þ

@3n
@x3 ¼

tx

ð1� njÞ2
ðn0xtxÞ0 þ n0x nxjþ

ntxj0

1� nj

� �	 

: ðA:21Þ
Analogously to (A.10)–(A.13), the derivatives of / with respect to x (and y) can be obtained through the intermediate n, as
follows:
@/
@x
¼ @/
@n

@n
@x
¼ nx

4�h
sech2ð~nÞ; ðA:22Þ

@2/
@x2 ¼
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� �
; ðA:23Þ
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2
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n3
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; ðA:24Þ
where ~n ¼ n=ð2�hÞ and
bx ¼
n0xtx�h

1� nj
; ðA:25Þ

cx ¼
tx�2

h

ð1� njÞ2
ðn0xtxÞ0 þ n0x nxjþ

ntxj0

1� nj

� �	 

; ðA:26Þ
denote grid-size normalized curvature-related terms. Similar identities are obtained for derivatives in the y direction by
suitably replacing x by y. Introducing (A.22)–(A.24) into (A.14) and (A.15) gives, after considerable algebraic manipula-
tions, a transcendental function whose maximum absolute value is reached as n ? ±1, as expected. The limit value is
given by
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T2½w� ! D2

12�2
h

g
sinðhÞ
� cosðhÞ

	 

; ðA:27Þ
where
g ¼ 2ðcx sinðhÞ � cy cosðhÞÞ þ 3aðby � bxÞ sinð2hÞ þ a2 cosð2hÞ sinð2hÞ: ðA:28Þ
The leading order truncation error is thus bounded by
jT2½w�j < D2

12�2
h

max
h;bx ;by ;cx ;cy

jgj: ðA:29Þ
In the current application, �h � D so the truncation error is controlled by g. Furthermore, note that for the simplest case of
a planar interface bx = by = cx = cy = 0, without a mapping (a = 1) the truncation error is of the same order of magnitude as the
approximation. It is not surprising then that one encounters difficulties when calculating the normal using /. The problem
stems from the fact that the truncation errors do not become small around the sharp interface (large gradients) region;
strictly speaking one can not even carry out the expansion that leads to (A.9). The mapping improves the results because
it introduces factors a and a2 in g, which facilitate reduction of some of the terms in g. Certainly, one can not affect the sec-
ond-order curvature terms, cx and cy, with this mapping, but errors associated with the regular curvature terms, bx and by, as
well as the planar terms can be suppressed by using small values of a. Since the curvature terms are normalized by the grid
spacing, (A.25), (A.26), and it is presumed that sufficient resolution is utilized in the simulations in order to resolve the spa-
tial and temporal dynamical content, these terms should not take large values and should not affect the resolution of the
normals in a properly resolved simulation.
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